Математика



Скачати 394.49 Kb.
Дата конвертації21.02.2016
Розмір394.49 Kb.
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАУКОВО-МЕТОДИЧНИЙ ЦЕНТР СЕРЕДНЬОЇ ОСВІТИ

ПРОГРАМИ

для допоміжної школи
МАТЕМАТИКА

5-10 класи

ББК 74.3

К68
Рекомендовано Міністерством освіти і науки України

(Лист Міністерства освіти і науки України № 1/11-4787 від 21.12.2001)

Програма

для допоміжної школи


МАТЕМАТИКА

5-10 класи
Укладачі:

Н. І. Королька - кандидат педагогічних наук, доцент;

В. В. Чекурда - вчитель допоміжної школи-інтернату № 16 м. Києва.

Рецензенти:

Г. М. Мерсіянова - канд. пед. наук, ст. наук. спів. лабо­раторії олігофренопедагогіки Інституту дефектології АПН України;

І. П. Чернецька - вчитель допоміжної школи-інтернату № 26 м. Києва.

Відповідальна за випуск: Г. І. Турина.


© Міністерство освіти і науки України, 2002

© Науково-методичний центр середньої освіти, 2002

ISBN 966-7058-03-4 © Видавництво «Богдана», 2002



ПОЯСНЮВАЛЬНА ЗАПИСКА
Програма з математики для 5-10-х класів складена відповідно до навчального плану спеціальної загально­освітньої школи для розумово відсталих дітей із тижне­вим навантаженням від 4 до 5 годин.

Основними завданнями викладання математики є:



  • формування доступних кількісних, просторових, часових уявлень та понять, знань про величини, основи наочної геометрії;

  • корекція та розвиток психічних процесів, пізна­вальної діяльності, особистості учня;

  • формування практичних умінь і навичок, що створюють умови для інтеграції розумово відста­лих учнів у суспільство.

Зміст програмних вимог щодо знань і вмінь учнів математичного матеріалу подано в двох варіантах: для учнів з більшими пізнавальними можливостями (І від­ділення) й, відповідно, з меншими пізнавальними мож­ливостями (II відділення).

Оскільки дана програма має забезпечити математич­ну підготовку розумово відсталих учнів як І, так і II від­ділення з одних і тих самих тем (розділів), відмінність ії відділення полягає у певному спрощенні математич­ного матеріалу без порушення логіки дисципліни.

У процесі навчання математиці учні засвоюють по­няття про натуральне число та нуль, натуральний ряд чисел і його властивості, поняття про звичайні й десят­кові дроби, уявлення про основні величини (довжина, вага, вартість, швидкість, час, площа, об'єм); отримують знання про метричну систему мір, про користування ви­мірювальними та креслярськими приладами, про вико­нання чотирьох арифметичних дій з багатоцифровими числами й дробами; про розв'язання простих і складених арифметичних задач (2-3 дії); одержують уявлення про площинні та об'ємні геометричні фігури, їх властивості.

У старших класах значна увага приділяється розвитку в учнів умінь лічити усно. Зокрема, передбачається ознайомлення школярів із прийомами усних обчислень у ме­жах 100.

Місце усної лічби на уроці залежить від мети, з якою вчитель включає її, лічбу, в урок. Усною лічбою може розпочинатися чи завершуватися та частина уроку, якій вона підпорядкована. На усну лічбу відводиться 5-10 хвилин на кожному уроці математики.

Внесення розділу «Усна лічба» до даної програми в календарні плани буде сприяти методично правильній послідовності проведення повторення, вдосконалення, автоматизації усних обчислювальних прийомів у розумово відсталих учнів.

З метою розвитку активності в школярів необхідно урізноманітнювати форми усної лічби, наповнювати ма­теріал життєвим змістом, цікавими завданнями, нес­кладними задачами.

В усній лічбі бажано, щоб приймала участь значна кількість учнів, класу, при цьому слід використовувати наочні посібники, дидактичний матеріал.

Усна лічба може проводитися на початку уроку для активізації розумової діяльності школярів. Пропону­ються завдання на закріплення раніше здобутих обчис­лювальних навичок. З метою підвищення інтересу поряд з цим видом діяльності бажано використовувати задачі у вигляді віршів, загадок, ребусів, кросвордів.

Усна лічба використовується і як прийом перевірки домашнього завдання. У цьому випадку для обчислення слід пропонувати задачі, аналогічні до опрацьованих уч­нями, але з меншими числами. Правильність розв'язан­ня прикладів перевіряється, наприклад, шляхом вико­нання арифметичних дій з одержаними результатами.

Перевірка засвоєння нового матеріалу, повторення та його закріплення теж можуть здійснюватися в процесі усної лічби. Корисним є проведення усної лічби, як під­готовки до сприйняття нового матеріалу, оскільки в про­цесі усної лічби стає можливим актуалізація у дітей тих знань, на основі яких відбувається засвоєння нових знань.

Якщо метою усної лічби є закріплення обчислюваль­них прийомів, то вона проводиться після ознайомлення з новим матеріалом або в кінці уроку.

Завдання з усної лічби передбачають розв'язання як прикладів, так і задач. Задачі для усних обчислень бе­руться з невеликими числами з практичним, життєвим змістом. Усна лічба може проводитися й одночасно із розв'язанням прикладів і задач. Вправи з усної лічби пропонуються учням у слуховій, зоровій, зорово-слу­ховій формах.

Вміння учнів лічити усно обов'язково оцінюється вчителем. Доцільно систематично вести спостереження за розвитком, удосконаленням, автоматизацією обчис­лювальних навичок школярів.

Значне місце у даній програмі відводиться розв'я­занню арифметичних задач. Такий вид роботи дає змогу не тільки формувати в учнів потрібну кількість матема­тичних понять, але й має велике корекційно-розвиваюче спрямування навчального процесу. У школярів розви­вається здатність до аналізу й синтезу, конкретизації; розвивається мовлення і збагачується словниковий за­пас.

Учні повинні навчитися самостійно читати текст за­дачі вголос і «про себе», розуміти її зміст, виділяти відомі та невідомі величини, встановлювати залежність між ни­ми, скорочено записувати задачу або ілюструвати її ма­люнком чи кресленням, таблицею, складати план роз­в'язання, вибирати дії, виконувати обчислення, переві­ряти правильність розв'язання, записувати відповідь.

На розв'язання арифметичних задач необхідно від­водити не менше, ніж половину навчального часу, при­діляти значну увагу самостійній роботі. Під час навчання слід використовувати схеми, пам'ятки, поступово ус­кладнювати завдання, переходячи від предметної наоч­ності до схем, креслень, діаграм, символічних рисунків.

У допоміжній школі учні мають розв'язувати задачі на рух. Поняття про швидкість рівномірного прямолі­нійного руху доцільно формувати шляхом безпосереднього спостереження швидкостей пішоходів і машин, велосипедистів, лижників. Такі спостереження за рухо­мими об'єктами дають учням змогу зрозуміти за­лежність між швидкістю, часом і відстанню, усвідомити та вибрати правильний спосіб розв'язання арифметич­ної задачі.

Особлива увага в 5-10-х класах приділяється задачам на обчислення часу, оскільки більшість учнів допо­міжної школи відчувають значні труднощі при їх розв'я­зуванні.

Задачі на обчислення площі та об'єму розв'язуються перш за все на основі безпосередніх практичних робіт учнів на вимірювання.

Підбираючи арифметичні задачі, вчитель не повинен обмежуватися лише матеріалом підручника, а використо­вувати матеріали з газет, науково-популярної літератури, відомості з практичних робіт учнів. З цією метою вчи­тель і вихователь організовують цілеспрямоване спосте­реження учнів за явищами соціального життя, природи, а також предметно-практичну та ігрову діяльність, по­в'язану з вивченням окремої математичної теми.

Поряд із готовими арифметичними задачами слід вчити учнів перетворенню та складанню нових задач, тобто творчій роботі. Це сприяє кращому засвоєнню структурних компонентів задачі та загальних прийомів роботи над нею.

Геометричний матеріал вивчається на спеціально відведених уроках математики. Повторення знань і фор­мування графічних умінь і навичок відбувається на інших уроках математики.

Формування геометричних понять сприяє розвитку просторових уявлень учнів і таких психічних функцій, як мислення, спостережливість, увага, пам'ять, мовлен­ня. У процесі вивчення геометричного матеріалу учні вчаться розпізнавати площинні та геометричні фігури на моделях, малюнках, кресленнях навколишніх предме­тів, знайомляться з властивостями геометричних фігур, засвоюють елементарні графічні вміння, оволодівають вимірювальними інструментами, набувають практичних умінь розв'язування задач.

Практичні вправи на вимірювання, креслення та мо­делювання доцільно застосовувати з урахуванням змісту професійно-трудового навчання учнів.

Оцінка знань учнів допоміжної школи з математики проводиться систематично й здійснюється на основі ре­зультатів їх усного опитування, письмових і практичних робіт.



Усне опитування дозволяє вчителю виявити ступінь розуміння учнями вивченого матеріалу, знань правил і вмінь застосування їх у практичній діяльності, а також — ступінь техніки-обчислень.

Запитання, поставлені вчителем, повинні вимагати від учнів пояснень власних дій, міркувань, уміння засто­совувати знання в новій ситуації. За один урок учитель має опитати кожного учня. Це дозволяє вивчити особли­вості засвоєння математичних знань кожним учнем і своєчасно надати йому допомогу.



Письмова перевірка знань проводиться на уроках математики за допомогою самостійних і контрольних робіт.

Самостійні письмові роботи проводяться на кожно­му уроці. Це розв'язування задач, прикладів, різні прак­тичні роботи й інші завдання.

У старших класах самостійна робота може тривати 25-30 хвилин.

Контрольні письмові роботи проводяться після вив­чення теми чи розділу, в кінці чверті, року. Вони можуть мати різну мету: перевірка знань нумерації, законів або властивостей арифметичних дій (переставна властивість додавання, множення, порядок дій); перевірка вмінь об­числювання прикладів, розв'язання задач різних типів; перевірка навичок вимірювання, креслення, знань влас­тивостей геометричних фігур і т. ін.

Контрольна робота виконується учнями самостійно, без будь-якої допомоги вчителя. На контрольні роботи відводиться одна навчальна година. Обсяг кожної контрольної роботи має бути таким, щоб учні мали змогу протягом визначеного часу виконати й перевірити її.

Контрольні роботи для І і II відділень складаються у відповідності до вимог щодо знань і вмінь учнів для кож­ного класу цих відділень.



Крім загальної контрольної роботи для всього класу, слід підготувати окремо завдання для тих учнів, з якими проводиться навчання за індивідуальним планом. Нижче подаємо приблизний обсяг завдань для контрольних робіт.


Класи

І відділення

II відділення

5

Одна задача на 2 дії, 2-4 приклади, математичний диктант, практичне завдання з геометричного матеріалу.

Одна задача на 1-2 дії, 2-4 приклади з двома числовими компонентами, математичний диктант, практичне завдання з геометричного матеріалу.

6

Одна задача на 2-3 дії, 2-4 приклади, математичний диктант, практичне завдання з геометричного матеріалу.

Одна задача на 1-2 дії, 2-3 приклади, які мають по 2-3 числових компоненти, математичний диктант, практичне завдання.

7

Одна задача на 3 дії, 4-6 прикладів, математичний диктант, практичне завдання з геометричного матеріалу.

Одна задача на 2 дії, 4 приклади, математичний диктант, практичні роботи з геометричного матеріалу.

8

Одна задача на 2-3 дії, 4-6-8 прикладів, практичне завдання з геометричного матеріалу, математичний диктант.

Одна задача на 2 дії, 2-4 приклади, математичний диктант, практичне завдання з геометричного матеріалу.

9

Одна задача на 2-3 дії, 6-10 прикладів, мате­матичний диктант, практичне завдання з геометричного мате­ріалу.

Одна задача на 2 дії, математичний диктант, 6-8 прикладів, практичне завдання з геометричного матеріалу.

10

Одна задача на 2-3 дії, 8-10 прикладів, математичний диктант, практичне завдання з геометричного матеріалу.

Одна задача на 2 дії, 6-8 прикладів, математич­ний диктант, практичне завдання з геометричного матеріалу.


Типи помилок у роботах з математики
Помилки, які трапляються в письмових роботах і ус­них відповідях учнів, поділяються на грубі помилки та недоліки.

Грубими помилками треба вважати ті, які свідчать про незнання або нерозуміння учнем опрацьованого програмного матеріалу, невміння застосувати правила для виконання арифметичної дії, плутання порядку дії тощо. Наприклад:

1. Помилки в обчисленнях, пов'язані з незнанням прийомів і правил виконання дій або із незнанням таб­личних результатів арифметичних дій, із незнанням по­рядку дій;

2. Помилки в розв'язанні задач:

- неправильний вибір дій;

- виконання дії не над тими числами;

- пропуск окремих дій;

- виконання непотрібних дій;

- неправильне формулювання запитань;

- невідповідність дії запитанню;

- нерозуміння залежності між величинами в за­дачі;

- невміння розв'язати задачу, аналогічну до розв'язаної у класі й вдома;

- неправильний запис найменувань при числах та ін.



Недоліками слід вважати ті помилки, які є наслідком неуважності учнів. До недоліків слід відносити: не зовсім точне формулювання правила, нераціональне обчислен­ня, нераціональний запис цифр і знаків дій, помилки при списуванні завдання, пропуск найменувань або пос­тановка їх там, де не слід.

Примітка.

1. За граматичні помилки в письмовій роботі оцінка з мате­матики не знижується. Ці помилки слід брати до уваги при оці­нюванні роботи з мови.

2. Учням з порушенням моторики, яке впливає на зовнішній вигляд письмової роботи, оцінка з математики не знижується.

5 клас

(5 год на тиждень, усього 170 год)



Перша чверть

(45 год)
Додавання та віднімання чисел у межах 100 (повторен­ня).

Всі види усної лічби в межах 100.

Усна та письмова нумерація в межах 1000. Лічба круглими сотнями до 1000 (пряма та зворотна). Тисяча як нова лічильна одиниця. Назва, запис і читання чисел, які складаються з круглих сотень і десятків, із сотень, де­сятків і одиниць.

Десятковий склад числа (розкладання числа на роз­рядні доданки й складання числа з розрядних доданків). Поняття про розряд. Порівняння розрядних одиниць. Порівняння чисел сусідніх розрядів (2, 20, 200). Нуль як показник відсутності одиниць, десятків, сотень у числі.

Натуральний ряд чисел. Пряма й зворотна лічба роз­рядними одиницями й рівними числовими групами (по 5, 20, 50). Місце числа в числовому ряді. Порівняння чи­сел за величиною. Числа одно-, дво-, три-, чотирициф­рові. Найбільше та найменше числа в кожному розряді. Числа парні й непарні.

Заокруглення чисел до круглих десятків, знак «=».

Римські цифри. Позначення чисел І-ХІІ.

Одиниці довжини та маси: кілометр, грам, тонна. Позначення: км, г, т. Співвідношення між одиницями довжини та маси: 1м = 1000 мм, 1 кг = 1000 г, 1 т = 1000 кг, 1 т = 10 ц. Практичні роботи з терезами, метром.

Додавання та віднімання круглих сотень і десятків. Додавання та віднімання без переходу через розряд у ме­жах 1000. Назви компонентів додавання та віднімання. Різницеве порівняння чисел.

Прості та складені арифметичні задачі всіх видів, які розв'язувалися в молодших класах. Задачі на різницеве порівняння чисел.

Повторення геометричного матеріалу, вивченого в попередніх класах.

Трикутники. Побудова рівнобічного, рівностороннього та різностороннього трикутників за даними до­вжинами сторін за допомогою циркуля та лінійки.
Друга чверть

(35 год)
Додавання та віднімання без переходу через розряд у межах 1000 (повторення).

Додавання та віднімання з переходом через розряд у межах 1000.

Табличне множення та ділення (повторення). Назви компонентів множення й ділення.

Переставна властивість множення.

Властивості нуля та одиниці при множенні й діленні.

Множення чисел 10, 100 і множення на 10, 100. Ділення чисел на 10 і на 100 без остачі.

Кратне порівняння чисел.

Число днів у році. Високосний рік.

Розв'язування простих і складених арифметичних за­дач на 2-3 дії (на комбінацію з раніше опрацьованих простих задач).

Розв'язування простих арифметичних задач на різницеве та кратне порівняння чисел.

Прямокутник (квадрат). Суміжні сторони, діагоналі.

Многокутники. П'ятикутники, шестикутники. Їх по­будова.
Третя чверть

(50 год)
Повторення нумерації в межах 1000. Лічба рівними числовими групами (2, 20, 200; 5, 50, 500; 25, 250).

Знак множення ( • ). Множення та ділення круглих десятків, сотень на одноцифрове число.

Письмове множення та ділення чисел без переходу та з переходом через розряд у межах 1000. Перевірка множення та ділення оберненою дією. Кратне порівнян­ня чисел.

Співвідношення між одиницями вартості, довжини, маси (повторення).

Перетворення чисел, одержаних при вимірюванні одиниць вартості, довжини, маси.

Усне й письмове додавання та віднімання чисел, одержаних при вимірюванні однієї, двох одиниць вар­тості, довжини без виконання перетворень або з пере­твореннями.

Використання деяких букв латинського алфавіту для позначення геометричних фігур (А, В, С, D, Е, К, М, О, Р).

Ламана. Її позначення буквами. Побудова ламаної за даними довжинами відрізків. Вимірювання довжини ла­маної.

Поняття про симетрію.



Четверта чверть

(40 год)
Утворення, читання та запис звичайних дробів. Дро­би правильні й неправильні. Порівняння дробів. Міша­не число. Порівняння мішаних чисел.

Прості та складені арифметичні задачі на знаход­ження частини числа, на різницеве й кратне порівняння чисел.

Повторення вивченого за рік. Усне й письмове дода­вання та віднімання, без переходу та з переходом через розряд у межах 1000.

Табличне та позатабличне множення та ділення.

Усне й письмове додавання та віднімання чисел, одержаних при вимірюванні однієї, двох одиниць вар­тості, довжини без виконання перетворень або з пере­твореннями.

Коло й круг. Центр і радіус. Побудова кола за допо­могою циркуля.

Повторення вивченого за рік.


Основні вимоги до знань і вмінь учнів

із більшими пізнавальними можливостями
Учні повинні знати:

- таблицю множення одноцифрових чисел і відпо­відні випадки табличного ділення;

- назви й порядок чисел до 1000;

- співвідношення між одиницями довжини, вар­тості, маси;



вміти:

- читати, записувати та порівнювати числа до 1000, виконувати усно й письмово додавання та віднімання чисел у межах 1000, користуватися таблицями множення та ділення, виконувати множення та ділення на одноцифрове число, виконувати перевірку множення та ді­лення;

- множити числа 0, 1 на 0, 1; ділити числа 0, 1 на 0, 1; множити числа 10, 100 на 10, 100; ділити числа 10, 100 на 10, 100;

- перетворювати числа, одержані при вимірюванні одиниць вартості, довжини, маси;

- розпізнавати й розв'язувати прості арифметичні задачі на знаходження частини числа, на різницеве й кратне порівняння; розв'язувати складені арифметичні задачі;

- читати, записувати звичайні дроби, розпізнавати чисельник і знаменник, правильні та неправильні дроби; мішане число;

- розпізнавати види трикутників;

- креслити трикутники за допомогою циркуля й лі­нійки за даними довжинами сторін;

- позначати ламану та геометричні фігури буквами латинського алфавіту, креслити ламану за даними дов­жинами відрізків і за сумою відрізків;

- користуватися знаком, позначеннями одиниць ве­личин (кг, г, м); записувати числа від І до XII римськими цифрами.


Основні вимоги до знань і вмінь учнів

із меншими пізнавальними можливостями
Учні повинні знати:

- назви й порядок чисел до 1000;

- співвідношення між одиницями довжини, вар­тості, маси;

вміти:

- читати, записувати числа до 1000, виконувати письмово додавання та віднімання чисел у межах 1000, користуватися таблицями множення та ділення» викону­вати множення та ділення на одноцифрове число (легкі випадки: 123  3 =; 240 : 2 =);

- множити числа 0, 1 на 0,1; ділити числа 0, 1 на 0, 1;

-множити, ділити числа на 10;

- перетворювати числа, одержані при вимірюванні одиниць вартості, довжини, маси;

- розпізнавати та розв'язувати прості арифметичні задачі на знаходження суми, остачі, різницевого та крат­ного порівняння чисел;

- виконувати дії з числами, одержаними при вимі­рюванні одиниць вартості та довжини (без перетво­рень);

- читати й записувати звичайні дроби;

- розпізнавати види трикутників за видами кутів;

- креслити ламану лінію за даними довжинами від­різків.




6 клас

(5 год на тиждень, усього 170 год)



Перша чверть

(45 год)
Повторення нумерації в межах 1000. 1, 10, 100, 1000 як лічильні одиниці. Усне й письмове додавання та віднімання в межах 1000 (всі випадки).

Нумерація в межах 10 000.

Пряма та зворотна лічба тисячами в межах 10 000. 10 000 як нова розрядна одиниця. Утворення, запис, чи­тання чисел у межах 10 000. Розрядна таблиця. Визначен­ня кількості розрядних одиниць, десятків у числі. Числа парні та непарні.

Натуральний ряд чисел. Пряма та зворотна лічба розрядних одиниць і рівних числових груп (5, 50, 500, 5000; 2, 20, 200, 2000; 25, 250, 2500).

Порівняння розрядних одиниць сусідніх розрядів. Порівняння розрядних одиниць із однаковою цифрою (2, 20, 200, 2000). Порівняння чисел.

Десятковий склад числа. Визначення кількості роз­рядних одиниць і загальної кількості одиниць, десятків у числі. Найбільше та найменше чотирицифрові числа.

Заокруглення чисел до круглих десятків і круглих со­тень.

Римська нумерація чисел І-ХХ. Запис чисел від І до XX римськими цифрами.

Усне та письмове додавання й віднімання в межах 10 000 (усі випадки). Перевірка додавання та віднімання. Назви компонентів додавання та віднімання. Зна­ходження невідомого компонента додавання та відні­мання. Зміна суми при зміні доданків. Зміна різниці при зміні зменшуваного й від'ємника.

Розв'язування простих і складених арифметичних задач (2-3 дії).

Відрізок. Додавання та віднімання відрізків. Збіль­шення та зменшення відрізків на заданий відрізок. Поділ відрізка на дві рівні частини за допомогою циркуля та лінійки.

Мірило.

Напрямки прямих ліній: вертикальний, горизон­тальний, похилий. Висок. Рівень.


Друга чверть

(35 год)
Множення та ділення в межах 1000 (повторення). Множення чисел на 10, 100, 1000; ділення на 10, 100, 1000.

Множення та ділення на одноцифрове число в ме­жах 10 000. Назви компонентів множення та ділення. Знаходження невідомого множника та діленого. Пе­ревірка множення та ділення.

Множення та ділення чисел, одержаних при вимірю­ванні однієї-двох одиниць вартості, довжини, маси на одноцифрове число.

Складені текстові арифметичні задачі на 2-3 дії. Напрямки прямих ліній (повторення). Взаємне положення прямих на площині: вертикаль­не, горизонтальне, похиле; прямі перетинаються (в тому числі, перпендикулярні), не перетинаються (паралельні). Креслення паралельних прямих на заданій відстані одна від одної. Знаки  і ||.
Третя чверть

(50 год)
Роздроблення й перетворення чисел, одержаних при вимірюванні. Усне й письмове додавання та віднімання чисел, одержаних при вимірюванні однієї-двох одиниць вартості, довжини, маси з роздробленням і перетворен­ням.

Усне й письмове множення чисел, одержаних при вимірюванні однієї-двох одиниць вартості, довжини, маси на одноцифрове число.

Усне й письмове ділення чисел, одержаних при вимі­рюванні однієї-двох одиниць вартості, довжини, маси на одноцифрове число.

Приклади на залежність між величинами: швид­кістю, шляхом і часом при рівномірному, прямолінійно­му русі. Розв'язування задач на рух.

Утворення, читання, запис звичайних дробів. Чи­сельник і знаменник. Порівняння дробів із однаковими чисельниками та, різними знаменниками й навпаки.

Порівняння дробів із одиницею. Дроби правильні й неправильні: і т. д.

Мішані числа, їх порівняння.

Основна властивість дробів. Скорочення дробів. Пе­ретворення дробів: вираження більшими частинами, заміна неправильного дробу мішаним числом.

Порівняння дробів і мішаних чисел.

Додавання дробів із однаковими знаменниками. Назви компонентів і результату дії. Перевірка (переста­новка доданків).

Віднімання дробів із однаковими знаменниками. Назви компонентів і результату дії.

Перевірка додавання відніманням і віднімання дода­ванням.

Знаходження однієї та кількох частин від числа (чис­ло ділиться на знаменник, знайдена частка множиться на чисельник).

Прості арифметичні задачі на знаходження однієї або декількох частин від числа.

Периметр. Позначення Р. Периметр трикутника, квадрата, прямокутника. Практичне обчислення.

Види кутів (повторення).

Трикутник, його елементи. Буквене позначення три­кутників. Види трикутників за величиною кутів. Висота трикутника.


Четверта чверть

(40 год)
Усне й письмове додавання та віднімання в межах 10 000 (повторення). Усне й письмове множення та ді­лення в межах 10 000 (повторення).

Усне й письмове додавання та віднімання чисел, одержаних при вимірюванні величин (повторення).

Множення та ділення чисел, одержаних при вимірю­ванні величин (повторення).

Звичайні дроби. Додавання та віднімання дробів і мі­шаних чисел із однаковими знаменниками. Знаходження однієї, кількох частин від числа (повторення).

Трикутники, Чотирикутники. Многокутники. Прак­тичне знаходження периметра цих фігур.

Коло. Круг. Лінії в крузі (радіус, діаметр, хорда).
Основні вимоги до знань і вмінь учнів

із більшими пізнавальними можливостями
Учні повинні знати:

- нумерацію в межах 10 000;

- основну властивість дробу;

- мірило;

- горизонтальне, вертикальне, похиле положення лі­ній;

- лінії в крузі;

- паралельні та перпендикулярні прямі, пересічні й непересічні прямі;

- периметр;

- висоту трикутника;

вміти:

- читати, записувати й порівнювати числа в межах 10 000;

- усно й письмово додавати, віднімати, множити та ділити на одноцифрове число в межах 10 000;

- усно й письмово додавати та віднімати, множити та ділити на одноцифрове число числа, одержані при вимірюванні однієї-двох одиниць вартості, довжини, маси;

- перетворювати й порівнювати звичайні дроби;

- додавати й віднімати дроби та мішані числа з одна­ковими знаменниками;

- знаходити одну, кілька частин від числа;

- розв'язувати складені арифметичні задачі;

- практично користуватися мірилом 2:1, 10:1, 100:1;

- креслити перпендикулярні, паралельні прямі на зазначеній відстані одна від одної;

- знаходити периметр трикутника, прямокутника, квадрата;

- користуватися рівнем, виском;

- користуватися знаками  і ||.
Основні вимоги до знань і вмінь учнів

із меншими пізнавальними можливостями
Учні повинні знати:

- нумерацію в межах 10 000;

- мірило;

- горизонтальне, вертикальне, похиле положення ліній;

- лінії в крузі;

- периметр;



вміти:

- читати, записувати числа в межах 10 000;

- усно виконувати дії в межах 100;

- письмово додавати, віднімати, множити на одноцифрове число в межах 10 000, виконувати ділення на одноцифрове число в межах 1000;

- усно й письмово додавати та віднімати, множити та ділити на одноцифрове число числа, одержані при вимірюванні однієї-двох одиниць вартості, довжини, маси без перетворень;

- читати, записувати звичайні дроби, розпізнавати чисельник і знаменник, правильні й неправильні дроби; мішане число;

- знаходити одну частину від числа;

- розв'язувати складені арифметичні задачі (на 2 дії);

- практично користуватися мірилом;

- знаходити периметр трикутника, прямокутника, квадрата;

- користуватися рівнем, виском.
7 клас

(5 год на тиждень, усього 170 год)



Перша чверть

(45 год)
Повторення нумерації в межах 10 000. Усне й пись­мове додавання та віднімання в межах 10 000. Усне й письмове множення та ділення в межах 10 000.

Утворення, запис і читання в межах 100 000 (повних і неповних).

Поняття про клас: клас одиниць і клас тисяч. Табли­ця класів і розрядів.

Натуральний ряд чисел. Пряма й зворотна лічба роз­рядними одиницями та рівними числовими групами (5, 50, 500, 5000; 2, 20, 200, 2000; 25, 250, 2500, 25 000). Заокруглення чисел до зазначеного розряду.

Визначення кількості розрядних одиниць і загальної кількості сотень, одиниць і десятків тисяч у числі. По­рівняння розрядних одиниць. Порівняння чисел.

Найбільше та найменше числа кожного розряду.

Числа прості й складені.

Усне й письмове додавання та віднімання багатоцифрових чисел у межах 100 000 (усі випадки). Назви компонентів арифметичних дій. Знаходження невідомо­го компонента.

Усне й письмове множення та ділення на одноциф­рове число в межах 100 000 (усі випадки з перевіркою).

Назви компонентів арифметичних дій. Знаходження невідомого компонента.

Ділення з остачею. Перевірка ділення з остачею.

Множення та ділення двоцифрового числа на дво­цифрове й легкі випадки ділення двоцифрового числа на двоцифрове (36:12, 60:15).

Коло. Круг. Центр, радіус, діаметр, хорда, дуга. Крес­лення кола й круга за зазначеним радіусом, діаметром.

Кути. Види кутів. Порівняння кутів шляхом накла­дання. Незалежність величини кута від довжини сторін.

Поняття про градус. Транспортир. Градусне вимірю­вання кутів, розміщених у різних положеннях по відно­шенню до сторін аркуша паперу: гострий кут - від 0° до 90°, прямий - 90°, тупий - від 90° до 180°, розгорнутий - 180°, повний - 360°.

Вимірювання та побудова прямих кутів, розміщених у різних положеннях.
Друга чверть

(35 год)
Усне й письмове множення та ділення на одноцифрове число в межах 100 000 (повторення).

Усне й письмове множення та ділення на двоцифро­ве число в межах 100 000 (усі випадки з перевіркою). Зна­ходження невідомого компонента.

Дужки. Порядок виконання дій у прикладах із дуж­ками.

Знаходження середнього арифметичного.

Розв'язування складених арифметичних задач на 3-4 дії.

Розв'язування арифметичних задач на знаходження середнього арифметичного.

Вимірювання й побудова гострих і тупих кутів, роз­міщених у різних положеннях.

Суміжні кути, їх сума.

Визначення величини кута, якщо відомий кут - су­міжний з ним.



Третя чверть

(50 год)
Роздроблення та перетворення чисел, одержаних при вимірюванні величин (повторення).

Усне й письмове додавання, віднімання, множення та ділення чисел, одержаних при вимірюванні величин, виражених однією-двома одиницями вартості, довжини, маси.

Міри часу. Число календарне й арифметичне.

Роздроблення та перетворення чисел, одержаних при вимірюванні однієї-двох одиниць часу.

Усне й письмове додавання та віднімання чисел, одержаних при вимірюванні однієї-двох одиниць часу.

Розв'язування складених арифметичних задач на 3-4 дії.

Суміжні кути. Сума суміжних кутів. Види трикутни­ків за кутами.

Сума кутів трикутника. Побудова трикутника за до­помогою транспортира, лінійки.

Побудова трикутника за даними довжинами двох сторін і градусної міри кута між ними, за довжиною од­нієї зі сторін і двома градусними мірами кутів, прилеглих до цієї сторони.


Четверта чверть

(40 год)
Звичайні дроби (повторення).

Поняття про десяткові дроби. Утворення десятко­вого дробу. Запис, читання та порівняння дробів. За­пис чисел, одержаних при вимірюванні одиниць вар­тості, довжини, маси у вигляді десяткових дробів і нав­паки.

Місце десяткових дробів у таблиці класів і розрядів.

Вираження дробу більшими або меншими однако­вими частинами.

Додавання та віднімання десяткових дробів із одна­ковою й різною кількістю знаків після коми.

Паралелограм, ромб; їх властивості, висота, пери­метр. Порівняння паралелограма та ромба, квадрата та ромба, прямокутника та паралелограма, ромба та прямо­кутника (за сторонами й кутами).
Основні вимоги до знань і вмінь учнів

із більшими пізнавальними можливостями
Учні повинні знати:

- розряди й класи одиниць і тисяч, їх місце;

- десяткові дроби;

- градусну міру прямого, розгорнутого, повного, гострого, тупого кутів;

- суму суміжних кутів, суму кутів трикутника;

- властивості паралелограма та ромба;



вміти:

- читати, записувати й порівнювати числа до 100 000;

- усно й письмово додавати, віднімати, множити, ді­лити на одноцифрове та двоцифрове числа;

- усно й письмово додавати, віднімати, множити, ділити на одноцифрове число числа, одержані при вимі­рюванні однієї-двох одиниць вартості, довжини, маси;

- усно й письмово додавати та віднімати числа, одержані при вимірюванні однієї-двох одиниць часу;

- додавати й віднімати десяткові дроби;

- розв'язувати задачі на знаходження середнього арифметичного; задачі з десятковими дробами; на рух;

задачі на 3-4 арифметичні дії;

- виділяти паралелограм, ромб, прямокутник, квад­рат серед інших чотирикутників;

- порівнювати паралелограм і ромб, прямокутник і паралелограм, ромб і прямокутник (за сторонами та ку­тами).


Основні вимоги до знань і вмінь учнів

із меншими пізнавальними можливостями
Учні повинні знати:

- нумерацію в межах 100 000;

- десяткові дроби;

- градусну міру прямого, розгорнутого, гострого, ту­пого кутів;

- суму кутів трикутника;

- властивості паралелограма й ромба;



вміти:

- читати й записувати числа в межах 100 000;

- усно й письмово додавати, віднімати, множити та ділити на одноцифрове число;

- усно й письмово додавати, віднімати, множити та ділити на одноцифрове число числа, одержані при вимірюванні однієї-двох одиниць вартості, довжини, маси (без перетворень);

- усно й письмово додавати та віднімати числа, одержані при вимірюванні однієї одиниці часу;

- додавати та віднімати десяткові дроби;

- розв'язувати складені арифметичні задачі на 2 дії;

на рух; на знаходження середнього арифметичного;

- виділяти паралелограм, ромб, прямокутник, квад­рат серед інших чотирикутників;

- порівнювати прямокутник і квадрат.


8 клас

(5 год на тиждень, усього 170 год)



Перша чверть

(45 год)
Повторення нумерації в межах 100 000. Усне й пись­мове додавання та віднімання в межах 100 000. Усне й письмове множення та ділення в межах 100 000.

Утворення, запис і читання чисел у межах 1 000 000 (повних і неповних). 1 000 000 як нова лічильна одини­ця. Натуральний ряд чисел. Лічба рівними числовими групами (5, 50. 500, 5000, 50 000; 2, 20. 200, 2000, 20 000, 200 000; 25, 250, 2500, 25 000, 250 000) та різними розряд­ними одиницями. Порівняння чисел у межах 1 000 000.

Римська нумерація чисел I-XXXV. Запис чисел від І до XXXV римськими цифрами.

Усне й письмове додавання, віднімання, множення та ділення на одноцифрове число в межах 1000 000. Назви компонентів дій. Перевірка правильності вико­нання дій. Знаходження невідомого компонента. Влас­тивості арифметичних дій (переставна, сполучна).

Прості арифметичні задачі на обчислення трива­лості дії, часу її початку та кінця.

Прості арифметичні задачі на обчислення часу, швидкості.

Складені арифметичні задачі на рух.

Геометрична фігура та геометричне тіло. Куб, пря­мокутний паралелепіпед, вершини, ребра, грані (проти­лежні, суміжні).

Побудова відрізка, трикутника, квадрата, симетрич­них даним відносно осі, центра симетрії.


Друга чверть

(35 год)
Усне й письмове додавання, віднімання, множення та ділення на одноцифрове число в межах 1 000 000 (пов­торення).

Множення та ділення на двоцифрове число, на оди­ницю з нулями. Назви компонентів дій. Перевірка пра­вильності виконання дій. Знаходження невідомого ком­понента. Властивості арифметичних дій (переставна, сполучна).

Десяткові дроби (повторення). Додавання та відні­мання десяткових дробів із однаковою та різною кіль­кістю знаків після коми.

Прості текстові арифметичні задачі на обчислення тривалості дії, часу її початку та кінця.

Площа фігури. Одиниці площі: квадратний сан­тиметр, квадратний дециметр, квадратний міліметр, квадратний метр, квадратний кілометр. Позначення: S; (кв. мм, мм2; кв. см, см2; кв. дм, дм2; кв. м, м2;кв. км, км2). Порівняння з лінійними мірами. Співвідношення мір площі. Перетворення чисел, одержаних при вимірю­ванні одиниць площі. Площа прямокутника (квадрата): Sпр., Sкв.

Прості арифметичні задачі на обчислення площі прямокутника, квадрата.
Третя чверть

(50 год)
Множення та ділення десяткових дробів на одно­цифрове число.

Множення та ділення десяткових дробів на 10, 100, 1000, круглі числа.

Множення та ділення десяткових дробів на двоциф­рове число.

Додавання, віднімання, множення та ділення чисел, одержаних при вимірюванні одиниць вартості, довжи­ни, маси, записаних у вигляді десяткових дробів.

Складені задачі на комбінацію з опрацьованих рані­ше простих задач на 2-3 дії.

Міри земельних площ: ар, гектар. Позначення: а, га.

Розв'язування задач на обчислення площі прямокут­ника (квадрата), земельних площ.


Четверта чверть

(40 год)
Звичайні дроби (повторення вивченого). Додавання та віднімання дробів із однаковими знаменниками. Зна­ходження дробу від числа; числа за його частиною.

Знаходження числа за його десятковим дробом: 0,2 (); 0,5 (); 0,02 (); 0,05 (); 0,25 () ; 0,75 (); 0,125 ().

Повторення вивченого за рік.

Куб. Паралелепіпед. Розгортка куба, прямокутного паралелепіпеда.

Геометричні тіла: циліндр, конус, піраміда, куля.


Основні вимоги до знань і вмінь учнів

із більшими пізнавальними можливостями
Учні повинні знати:

- натуральний ряд чисел від 1 до 1 000 000;

- геометричні фігури й тіла;

- одиниці вимірювання площі фігури, земельних площ; їх позначення, співвідношення;

- розгортку куба й прямокутного паралелепіпеда;

вміти:

- читати, записувати, порівнювати числа в межах 1 000 000;

- додавати, віднімати, множити й ділити на одно- і двоцифрове числа в межах 1 000 000;

- множити й ділити десяткові дроби на 10, 100, 1000;

- додавати, віднімати, множити та ділити на одно- і двоцифрове числа цифри, одержані при вимірюванні одиниць вартості, довжини, маси й записані у вигляді де­сяткових дробів;

- обчислювати час тривалості дії, її початок, кінець;

- знаходити число за його частиною;

- перетворювати числа, одержані при вимірюванні одиниць площі;

- вимірювати й обчислювати площу прямокутника, квадрата;

- креслити розгортку куба, прямокутного парале­лепіпеда;

- користуватися позначеннями: S (мм2, см2, дм2, м2, км2);

- розрізняти циліндр, конус, піраміду, кулю.


Основні вимоги до знань і вмінь учнів

із меншими пізнавальними можливостями

Учні повинні знати:

- натуральний ряд чисел від 1 до 1 000 000;

- геометричні фігури й тіла;

- одиниці вимірювання площі фігури, земельних площ; їх позначення;

вміти:

- читати, записувати числа в межах 1 000 000;

-додавати, віднімати, множити та ділити на одноцифрове число в межах 1 000 000;

- множити та ділити дроби на 10;

-додавати, віднімати, множити та ділити на одноцифрове число десяткові дроби;

-додавати, віднімати, множити та ділити на одноцифрове число числа, одержані при вимірюванні оди­ниць вартості, довжини, маси й записані у вигляді десят­кових дробів;

- вимірювати й обчислювати площу прямокутника та квадрата;

- користуватися позначеннями: S (мм2, см2, дм2, м2, км2);

- розрізняти куб, прямокутний паралелепіпед, ци­ліндр, піраміду, кулю;

- обчислювати час тривалості дії, її початок і кінець.


9 клас

(4 год на тиждень, усього 136 год)



Перша чверть

(36 год)
Повторення нумерації в межах 1 000 000 (всі види вправ з нумерації попередніх класів). Таблиця класів і розрядів.

Додавання та віднімання багатоцифрових чисел. Властивості дій додавання та віднімання, їх використан­ня під час усних і письмових обчислень. Зміна резуль­татів додавання та віднімання зі зміною компонентів до­давання та віднімання.

Множення та ділення багатоцифрових чисел на од­но- та двоцифрове числа. Властивості дій множення та ділення. Зміна результатів дій множення та ділення. Зміна результатів дій множення та ділення залежно від зміни компонентів.

Порядок виконання дій.

Ділення з остачею.

Перевірка арифметичних дій.

Розв'язування задач, вивчених раніше.

Розв'язування задач на знаходження середнього арифметичного.

Симетрія. Побудова відрізків, трикутника, квадрата, симетричних даним відносно осі, центра симетрії.

Геометричні тіла: куб, конус, циліндр, піраміда, куля, прямокутник, паралелепіпед.
Друга чверть

(28 год)
Повторення вивченого: додавання та віднімання дробів із однаковими знаменниками.

Порівняння дробів (усі випадки). Додавання та від­німання дробів із різними знаменниками. Розв'язування прикладів зі звичайними дробами на 2-3 дії.

Розв'язування простих арифметичних задач на зна­ходження дробу від числа.

Розв'язування складених арифметичних задач на 2-3 дії.

Площа фігури. Міри площі, їх співвідношення. Міри земельних площ. Обчислення площі прямокутника й квадрата за наступними формулами; Sпp.= ab; Sкв.= 2a.

Розв'язування складених арифметичних задач, для розв'язування яких необхідно використовувати матема­тичні залежності між площею прямокутника та довжи­ною його сторін.
Третя чверть

(40 год)
Десяткові дроби. Перетворення десяткових дробів. Порівняння дробів.

Вираження числа, одержаного в результаті вимірю­вання величин десятковим дробом і навпаки. Скінченні та нескінченні десяткові дроби. Додавання та віднімання десяткових дробів із різною кількістю знаків після коми.

Множення та ділення десяткових дробів на одно-, двоцифрове числа, в тому числі, чисел, одержаних при вимірюванні одиниць вартості, довжини, маси, записа­них у вигляді десяткових дробів.

Порядок дій у прикладах із десятковими дробами, які включають 4-5 арифметичних дій.

Знаходження десяткового дробу від числа.

Знаходження числа за його десятковим дробом: 0,2 (); 0,5 (); 0,02 (); 0,05 (); 0,25 () ; 0,75 (); 0,125 ().

Арифметичні дії з числами, одержаними при вимі­рюванні.

Прості арифметичні задачі на знаходження дробу від числа й числа за його дробом.

Міри площі, їх співвідношення. Міри земельних площ(повторення).

Об'єм тіла. Одиниці об'єму: кубічний міліметр, ку­бічний сантиметр, кубічний дециметр, кубічний метр.

Позначення: V (куб. мм, мм3; куб. см, см3; куб. дм, дм3; куб. м, м3).

Порівняння мір об'єму з квадратними та лінійними мірами. Виведення таблиці кубічних мір.

Знаходження об'єму куба.


Четверта чверть

(32 год)
Поняття про відсоток.

Заміна десяткових дробів відсотками.

Заміна відсотків десятковими дробами.

Знаходження відсотків від числа та числа за 1, 2, 5, 10, 20, 25, 50 відсотками.

Проста арифметична задача на знаходження від­сотків від числа; на знаходження числа за його відсотком.

Складені арифметичні задачі на знаходження відсот­ків від числа.

Повторення вивченого за рік.

Геометричні фігури.

Геометричні тіла.

Розв'язування задач на обчислення периметра, пло­щі прямокутника, квадрата, земельних площ.
Основні вимоги до знань і вмінь учнів

із більшими пізнавальними можливостями
Учні повинні знати:

- натуральний ряд чисел у межах 1 000 000;

- геометричні фігури й тіла;

- об'єм фігури, одиниці вимірювання об'єму, їх спів­відношення;



вміти:

- читати, записувати, порівнювати числа в межах 1 000 000;

- додавати та віднімати, множити та ділити на одно-і двоцифрове число числа, отримані при вимірюванні одиниць вартості, довжини, маси та записані у вигляді десяткових дробів;

- додавати та віднімати звичайні дроби з різними знаменниками;

- знаходити дріб від числа та число за його дробом;

- замінювати десяткові дроби відсотками; відсотки - десятковим дробом;

- знаходити відсотки від числа та число за його від­сотком;

- користуватися позначеннями: мм3, см3, дм3, м3.

- вимірювати й обчислювати об'єм прямокутного паралелепіпеда, куба.
Основні вимоги до знань і вмінь учнів

із меншими пізнавальними можливостями
Учні повинні знати:

- натуральний ряд чисел у межах 1 000 000;

- геометричні фігури й тіла;

вміти:

-читати, записувати й порівнювати числа в межах 1 000 000;

- виконувати арифметичні дії в межах 1 000 000;

- додавати та віднімати звичайні дроби з однакови­ми знаменниками;

- знаходити одну частину від числа;

- знаходити один відсоток від числа;

- додавати, віднімати, множити та ділити на одноцифрове число числа, отримані при вимірюванні оди­ниць вартості, довжини, маси;


  • практично використовувати міри площі, земель­них площ.


10 клас

(4 год на тиждень, усього 136 год)



Перша чверть

(36 год)
Нумерація багатоцифрових чисел. Таблиця класів і розрядів.

Усне й письмове додавання, віднімання, множення та ділення з багатоцифровими числами.

Множення та ділення багатоцифрових чисел на трицифрове число (легкі випадки).

Розв'язування прикладів на 3-4 дії. Порядок вико­нання дій.

Дужки.


Розв'язування простих арифметичних задач, які роз­кривають сутність кожної дії та відношень «більше (мен­ше) на», «більше (менше) в»; сутність середнього ариф­метичного кількох чисел.

Розв'язування складених арифметичних задач, які вимагають 2-3 дії; задач, для розв'язування яких не­обхідно використовувати математичні залежності між величинами (швидкість, час і шлях при рівномірно­му прямолінійному русі; ціна, кількість і вартість товару).

Дії з відрізками. Додавання та віднімання відрізків.

Положення у просторі: горизонтальне, вертикальне, похиле.

Взаємне положення прямих на площині: перетина­ються (в тому числі, перпендикулярні), не перетинають­ся (паралельні).

Креслення паралельних прямих на зазначеній від­стані одна від одної.

Лінії в крузі. Сектор. Сегмент.

Друга чверть

(28 год)
Додавання та віднімання звичайних дробів із одна­ковими й різними знаменниками (повторення).

Заміна мішаного числа неправильним дробом. Вик­лючення цілого числа з неправильного дробу.

Множення й ділення звичайного дробу на ціле чис­ло.

Порядок дій у прикладах із звичайними дробами (на 3-4 арифметичні дії).

Розв'язування простих арифметичних задач на зна­ходження дробу від числа; на знаходження числа за його частиною.

Розв'язування складених арифметичних задач, які вимагають 2-3 дії.

Види кутів. Вимірювання та креслення кутів за допо­могою транспортира.

Лінійні, стовпчикові, кругові діаграми.
Третя чверть

(40 год)
Сумісні дії з цілими числами, із звичайними та де­сятковими дробами. Об'єм. Міри об'єму. Співвідношен­ня лінійних, квадратних і кубічних мір.

Розв'язування простих і складених арифметичних задач на обчислення об'єму прямокутного паралелепіпе­да, куба.
Четверта чверть

(32 год)
Повторення нумерації багатоцифрових чисел. Усі дії з цілими й дробовими числами. Порядок дій у прикла­дах.

Дужки.

Знаходження периметра, площі прямокутника (квад­рата), об'єму прямокутного паралелепіпеда, куба.



Розв'язування простих і складених арифметичних задач на знаходження об'єму прямокутного парале­лепіпеда, куба.

Розв'язування складених арифметичних задач усіх типів, вивчених у попередніх класах.


Основні вимоги до знань і вмінь учнів

із більшими пізнавальними можливостями
Учні повинні знати:

- натуральний ряд чисел від 1 до 1 000 000;

- що кожне наступне число на одиницю більше від попереднього і навпаки;

- напам'ять таблицю додавання одноцифрових чи­сел і відповідні випадки віднімання; таблицю множення одноцифрових чисел і відповідні табличні випадки ділення;

- назви та позначення одиниць наступних величин:

вартості, довжини, маси, часу, площі, об'єму;

- співвідношення між одиницями вартості, довжи­ни, маси, часу;

вміти:

-читати, записувати й порівнювати числа в межах 1 000 000;

- виконувати нескладні усні обчислення (додаван­ня, віднімання, множення, ділення) з натуральними числами, дробами; числами, отриманими при вимірю­ванні;

- виконувати письмові обчислення (додавання, від­німання, множення та ділення на одноцифрове й дво­цифрове числа) з натуральними числами та десятковими дробами;

- називати компоненти арифметичних дій;

- розв'язувати прості арифметичні задачі, що роз­кривають зміст кожної дії та зміст наступних відношень:

«більше (менше) на», «більше (менше) в», а також — розв'язувати задачі на знаходження дробу, відсотків від числа, числа за його частиною, відсотком; розв'язувати задачі на знаходження середнього арифметичного де­кількох чисел;

- розв'язувати складені задачі, які вимагають 2-3 арифметичних дій, і задачі, для розв'язання яких не­обхідно використовувати знання залежності між вели­чинами (швидкість, час і відстань при рівномірному прямолінійному русі; ціна, кількість і вартість това­ру; площа прямокутника й довжини його сторін; об'єм прямокутного паралелепіпеда й довжини його ребер та ін.);

- вимірювати відрізок, ламану, сторони многокут­ника;

- будувати відрізки заданої довжини, прямокутник (квадрат) за поданою довжиною сторін за допомогою креслярського трикутника;

- креслити коло за допомогою циркуля за поданим радіусом, діаметром;

- вимірювати кути, креслити кути за поданими розмірами за допомогою транспортира;

- обчислювати периметр, площу прямокутника, об'єм прямокутного паралелепіпеда.
Основні вимоги до знань і вмінь учнів

із меншими пізнавальними можливостями
Учні повинні знати:

- нумерацію багатоцифрових чисел;

- що кожне наступне число на одиницю більше від попереднього й навпаки;

- назви та позначення одиниць наступних величин:

вартості, довжини, маси, часу, площі;

- співвідношення між одиницями вартості, довжи­ни, маси, часу;



вміти:

-читати, записувати й порівнювати числа в межах 1 000 000;

- виконувати нескладні усні обчислення (додавання, віднімання, множення та ділення) з натуральними чис­лами та числами, отриманими при вимірюванні;

- виконувати письмові обчислення (додавання, від­німання, множення та ділення на одноцифрове число) з натуральними числами;

- розв'язувати прості арифметичні задачі, що роз­кривають зміст кожної дії та зміст наступних відношень:

«більше (менше) на», «більше (менше) в»;

- розв'язувати складені задачі на 2-3 арифметичні дії та задачі, для розв'язання яких необхідно викорис­товувати знання залежності між величинами (ціною, кількістю та вартістю);

- вимірювати відрізок, ламану, сторони многокут­ника;

- будувати відрізки за поданою довжиною;

- креслити коло за допомогою циркуля за поданим радіусом;



- вимірювати кути за допомогою транспортира;

- обчислювати периметр, площу прямокутника, квадрата.


База даних захищена авторським правом ©refs.in.ua 2016
звернутися до адміністрації

    Головна сторінка